Operational Gaussian Schmidt-number witnesses
نویسندگان
چکیده
منابع مشابه
On the Number of False Witnesses for a Composite Number
If a is not a multiple of « and a"~ ' * 1 mod n, then n must be composite and a is called a "witness" for «. Let F(n) denote the number of "false witnesses" for n, that is, the number of a mod n with a"-1 s l mod «. Considered here is the normal and average size of F( « ) for « composite. Also considered is the situation for the more stringent Euler and strong pseudoprime tests.
متن کاملGaussian modeling and Schmidt modes of SPDS biphoton states
A double-Gaussian model and the Schmidt modes are found for the biphoton wave function characterizing spontaneous parametric down-conversion with the degenerate collinear phase-matching of the type I and with a pulsed pump. The obtained results are valid for all durations of the pump pulses, short, long and intermediately long.
متن کاملOn the Number of False Witnesses for a Composite Number1
When presented with a large number n which one would like to test for primality, one usually begins with a modicum of trial division . If n is not revealed as composite, the next step is often to perform the simple and cheap test of computing an-1 mod n for some pre-chosen number a > 1 with (a,n) = 1 . If this residue is not 1 , then n is definitely composite (by Fermat's little theorem) and we...
متن کاملScalar dissipation fronts in high-Schmidt number mixing.
Jörg Schumacher Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany Herwig Zilken Visualization Laboratory, Zentralinstitut für angewandte Mathematik, Forschungszentrum Jülich, D-52425 Jülich, Germany Bruno Eckhardt Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany Katepalli R. Sreenivasan International Centre for Theoretical Physics, 34014 Triest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2013
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.88.062323